Since there are six poles associated with four design positions (P,
P.. PP, P, P itfollows that there are three Opposite Pole

13’ 23 729

Pairs among those six poles.

P —P., =\ All the Opposite Pole
1323—-———]?1 A Pairs for Four Positions
P24_P12

If you take any two sets of these Opposite Pole Pairs, you can use
the four corresponding poles as the four vertices of a quadrilateral.
Big deal, you say. If you use the sets of Opposite Pole Pairs as the
diagonals of your quadrilateral, it is a very big deal, because then
you have what is known to the cognoscenti in the trade as an Oppo-
site Pole Pair Quadrilateral!

An Opposite Pole Pair Quadrilateral is one that has an Opposite
Pole Pair for each of its diagonals. How do I know? By definition!
That’s just how it is! This is a mathematical definition and not some-
thing based on common sense. (Well-known fact among third grad-
ers: Common sense has no place in mathematics.)

Usually if you saw the figure at P

the right and were told the four 14

vertices defined a quadrilatral you P23
would say that the diagonals were

the lines from P, to P , and from p
P.toP,,. In this case, YOU 13
WOULD BE WRONG! P,
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If this is an Opposite Pole Pair
Quadprilateral then, by defini-
tion, the diagonals are the lines

from Pl , to P23 and from P2 , to
P

13"

The sides of the O.P.P.Q. (Op-
posite Pole Pair Quadrilateral,
for those who hate getting the abbreviated version of the story) are
the lines connecting poles with a common subscript. For instance,
the line P ,—P . is a side of this O.P.P.Q., since it has a 1 subscriptin
common.

O.K. Now you know what an Opposite Pole Pair Quadrilateral 1s.
Since there are three sets of Opposite Pole Pairs associated with four
positions and since it takes two diagonals to define a quadrilateral, it
follows that there are three possible O.P.P.Q.’s you can form— you
can use any two Opposite Pole Pairs as diagonals for your quadri-
lateral.

Great. You've just given me a
94 page lecture on Opposite
Pole Pair Quadrilaterals and |
don’t have the foggiest idea

why | should give a damn!
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The reason you should give a damn about Opposite Pole Pair Quad-

rilaterals 1s that

A

/

EQUAL ANGLES!
-

YOU KNOW YOU ARE STANDING ON A |
CENTERPOINT FOR FOUR POSITIONS IF |
YOU SEE OPPOSITE SIDES OF AN OPPOSITE
POLE PAIR QUADRILATERAL UNDER }

SRR
CONIRI

N N N I
AR \\\\\\ AR
R R

/

There. I’ve said it. Are you happy now? In other words, a general
way to know you are standing on a centerpoint is if you are standing
in a place where you see opposite sides of any O.P.P.Q. under equal
angles (or perhaps angles that differ by 180°), as shown below.

P14
&

O
.5

~  ——— " Tjeuoseld

An Opposite Pole Pair
A\ Quadrilateral

N
oy @
L G/M

This directed angle equals
this other directed angle!
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“There’s gotta be an easier way to
find these centerpoints...” (you say)

“There isl” (I say
(I just needed to drag out the story a bit to make
this tome weighty enough so my department chairman
would think | had been doing something useful with my
time instead of just picking belly button lint and
weaving it into clothl)

oming up is a graphical procedure by which we can system
atically construct the locations of points that meet the condi
tions we now know centerpoints must satisfy— no random
searching around required! It’s a closed-form graphical procedure
that at least stands a chance of finding the desired points without a
lot of wasted effort.

Here’s how it works:

| = First, find the six poles corresponding to the four given
design positions.

| = Then, pick out two convenient Opposite Pole Pairs to
serve as diagonals for an Opposite Pole Pair Quadri-
lateral.
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| = Next, arbitrarily pick any two opposite sides of the
selected quadrilateral.

| = Now, construct the perpendicular bisectors to both
the sides you selected.

P

An Opposite Pole Pair Vo
Quadrilateral of Your *~
Choice

Bisectors you construct 23

| = From the pole at the end of one of the sides lay out an
arbitrary signed angle o as shown on the next figure.
Mark the point where it cuts the bisector to that side.
(Since I laid out the angle on the side with a #1 sub-
script in common, I am labeling this point B, so as
not to get confused.) (B as in “Bisector” and 1 as in
“17, getit?)
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Side with the common
subscript “1”
(in this case)//\f@\\,

P

14

23

| = Lay outthe same si gned angle o on the opposite side.
Again mark the point where it cuts the bisector.

e
Side with the commorN~
subscript “2”
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= Since, in this case, I am now working on the side with

a #2 subscript in common, I am labeling this point B,
cause that somehow seems more logical than nam-
ing it “Gwendolyn”.

,
/
/
.
i
H
|

B,
| .= Put one of your eyeballs at B, and the other at B,. (I
know it hurts like hell but just do it!)

| = Notice that the eyeball at B, sees the side from P, to
P, under the same signed angle (both in magnitude
and direction) as does your other eyeball when it looks
from P, to P . In other words, as you look from the
3 to the 4 pole you see them under the same angle
regardless of which subscript is in common.
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70

| = Now swing two circles, one centered at B, and the

=

other at BZ.

P

13

- Way back in high school you probably learned that a
point on a circle sees a chord of the circle under half
the central angle. (Well. In your case you probably
didn’t learn it but you should have. In any event, it’s
true.)

Since the chords P ,-P,, and P_.-P,, subtend the same
central angle P as seen from the centers of the two
circles, they must subtend /2 as seen from any point
on the circles themselves.



Looking from any point on the
circumference of the first
circle we see from P, to P,
under the same signed angle
B/2 as we see P_, to P, look-
ing from any point on the sec-
ond circle.

S0 what's your point?
(You tend to ramble a lot.)

The point is not “what’s your point”.
It's “What are your points?” Clearly we have
not one point but several. In fact, to be
precise, we now have exactly two, and
they are just the two we were
looking for!
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e have just succeeded in constructing—count ‘em— not

one but two centerpoints, M and M". The places where

the two circles intersect see opposite sides of the oppo-
site pole pair quadrilateral under equal angles! Call out the brass
band! (Actually, the angles may not be equal but may differ by
180°from one another, but they stilll satisfy the requirements for valid
centerpoints.)
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Repeat the process. Just vary the angle o slightly, swing another set
of circles, and mark the locations of the new intersections M and M".
Bingo! You’ve got two more centerpoints. Keep doing this an infi-
nite number of times, varying the angle o¢ from -180° to + 180° and
you will easily generate an infinite number of little points like M and
M".

Notice that for some choices
of angle o the circles won’t
actually intersect! (See the two
dashed circles in the figure.)

O.K. So I lied. It’s not easy. Constructing an infinite number of
points will take you an infinitely long time but what the hell, you’ve
got nothing better to do with your weekends. It’s not like you had a
sex life or anything. Actually, you probably don’t need all the points
to get an adequate idea of what is going on so quit after the first
month or so of graphical constructions, or if you get a date, which-
ever comes earlier.
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Hook the M’s and M”’s all to-
gether in order and you get a pic-
ture that looks kind of like a
squirming octopus. (It’s kind of
like connecting the dots on the
kiddy page in the Sunday Comics
and getting a picture of Santa.)

If you’ve done it right, the curve
will probably look like an octopus
because it is a cubic curve. Cubics
are nice smooth octopus-like
curves that have at most three in-
tersections with a straight line. So,
if you find your curve wiggles
back and forth a lot it means you
have botched the job up. Instead
of being octopus-like your curve

This is the
Centerpoint
Curve we
were looking
for!

O
P

el

is all squiddley. The straight-line rule provides a quick graphical
check to see if things seem to be going along O.K..



Even though the curves usu-

ally look like octopi, they of- ~ Two branches
ten break off like a droplet and
have two branches as in this
case. The straight line rule
still works, as this is just a
single cubic curve even
though it has two parts.

The curve also has an asymptote and

extends to infinity. For most engineer-

T . ing design purposes, you probably
) — :

<, don’t need to construct the parts of the

(This isn’t the whole asymp- - \y1ve that lie beyond Vladavostok, but

tote. In factit’s less than a oy should know that theoretically

half-assymptote!) they exist. Actually, the points at in-

finity are very interesting, since they

are centers for an infinitely long link. Nobody but the military can

afford an infinitely long link but lots of folks are interested in sliders

which behave like they were attached to an infinitely long link. We’ll

get back to that later. \

If you find yourself obsessively attached
to infinitely long links, perhaps you should
see a link shrink!
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So, Professor Kaufman. | understand
you are working on the world’s first biological
mechanism made from the DNA of a prune?

 That’s true. You should

see that linkage g

ow that we have a closed-form graphical procedure for con
structing centerpoints, how can we construct the circlepoint

curve, you ask.

Now that we have a closed-form
graphical procedure for constructing
centerpoints, how can we construct
the circlepoint curve, | ask?

The answer is “With great
arduous & laborious dif-
ficulty, slaving away for
months at a drafting table,
surrounded by reams of
paper and constructions,
floor littered with
crumpled tracing paper
overlays from fruitless hours applying obscure theorems from higher-
level projective geometry !” (Well, there I go again, exaggerating
for dramatic effect. It’s not with great difficulty. It’s about the same
amount of difficulty as for the centerpoint curve”. It’s no piece of
cake but it’s not incredibly hard either.)
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What’s the difference between a circlepoint curve and a centerpoint
curve? They’re really just the same! It only depends on your point
of view.

Suppose you had two observers, one riding on the moving coupler
link of a four-bar and the other standing on the frame. The person
riding on the moving body isn’t aware that the coupler link is mov-
ing (until it swings around to the point where they start to fall off).

Look at that scrump-
tious kid swaying
around down therel

-

Don’t fall,
liddle boidy!

Each observer thinks everything atached to their own reference frame
is stationary. Pivots attached to their own body appear as fixed
centerpoints and pivots on the other person’s body are seen as swing-
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ing on circular arcs centered at the fixed centerpoints on the body on
which they are riding. Thus, one person’s centerpoints are the other
person’s circlepoints and vice versa. If you don’t like your vice versa,
stay away from kinematic inversions.

In other words, the
circlepoint curve is con-
structed just the way a
centerpoint curve 1S
drawn, but it is drawn on

the moving body instead R Y, '\\
of the fixed body. To do \ N
that, you need to use prop- \
erties of the moving poles o (:\/
instead of properties of the ”&\\,.
fixed poles.

Before, we drew the

centerpoint curve by using

an opposite pole-pair

quadrilateral. 1f, instead, we went through exactly the same proce-
dure, but using an opposite image pole pair quadrilateral, we would
end up with a circlepoint curve drawn on the moving body in it’s
number one position (assuming all the image poles were in the num-
ber one positon). Why? By analogy. Because circlepoints are to
centerpoints as image poles are to poles and as moving bodies are to
fixed bodies; because university faculty is to university administra-
tors as bird dung is to... well, you get the idea.
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~~~~~~

A few pairs of pretty Burmester

@nt and Centerpoint curves
twisting in the wind...
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O.K. At this point we have constructed a reasonable length of both
the circlepoint and the centerpoint curves in the areas of interest, or

so we hope.

o h\
— |
—
That’s the general vicinity in which you

(
want your mechanism pivots to lie.

Why do you say “or so we hope™?

M///

“So we hope” ism

cantation we make because the
curves almost never end up where you want
them to. “So we hope” is a testament to the
pathetic optimisim of the human spirit. It's
another way of saying “a sucker is born
every minute.”
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All that 1s left 1s for us to pick off a couple of matching sets of
circlepoints and centerpoints. Each circlepoint corresponds to one
and only one centerpoint and vice versa. Knowing either a circlepoint
or a centerpoint, you should be able to find the other. But with all
these damn points on the circlepoint and centerpoint curves, how do
we match them up? Which circlepoints go with which centerpoints?
Typically, we want to find a couple of matching sets to use as pivots
for a four-bar linkage as seen in its number one position.

One way to match up corresponding points on the two curves is by
using any pole with a number one subscript, such as P . You know
that standing on the pole, you see the circlepoint and centerpoint
under the angle ¢, . Thus if you pick any point on either the
circlepoint or the centerpoint curve, the corresponding point on the
other curve will be on a line ¢, ,, away. (You just need to be careful
to keep the sign of the angle straight.) If there is any ambiguity, you
can use another

pole and it’s half

angle of rotation R
as a check. The

right point will ™\~
lie at the inter- .
section of the ~
two lines from "(b /9
the two poles.

Centerpoint Curve é\

Circlepoint Curve in \\Plj
its first position /
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A lot of this complex
number stuff was developed
by George Sandor and taught to

me when | was a small child prodigy and
sat on his knee at Yale Graduate

School of Engineering & Applied Sci-
ence. | added some wrinkles of
my own both on and
off his knee.

The author sitting on the knee of his mentor, Dr.
George N. Sandor and learning to play with com-
plex numbers and make corny puns.

iven: n positions of plane 7, specified in the fixed coordi
nate system by means of the vectors

rj, j= 1,2,...”
and the displacement angles

0 j =2, 3,...N
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which indicate the rotation of the body relative to its orientation in
the first (reference) position. (Any convenient point A can be used
as a reference for the vectors r..

circlepoint. (There is a one to one correspondence between
the circlepoints and the centerpoints. Each circlepoint de-
scribes a circle about one center, unless you wear bifocals.)

F ind: Circlepoints K and Centerpoints M corresponding to each

A
j" Displaced
Positionp;}(—' 7

S S

Reference .-
Position

N\ \\\\\ AN =
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In the reference position, the unknown circlepoint, K bears a certain
unknown relationship to the known point A . Let the unknown vec-
tor Z, rigidly attached to_the moving plane, locate point A, with
respect to K.

Let W locate the unknown circlepoint K of the moving plane with
respect to the unknown centerpoint M in the fixed plane.

As the body goes from its first to its j* position, the circlepoint goes
from K, to K,, rotating about point M. The vector Z is rigidly at-
tached to the moving plane, so it rides along with it from Z, to Zj and
it rotates by the displacement angle ¢.

Thus we have

( Given

' — el¢1 Z1

Unknown ) ( Unknown

Meanwhile, back at the ranch, the unknown vector Wl has rotated
through an unknown angle Y, as W, went to Wj:

Wj =ei W,
\/______/

All Unknown

Point A has been displaced from Al to Aj by the readily calculated
amount
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Looking at the vector polygon consisting of Sj, Zj, Z, W, and W we
have

5I=Zj-—Z1 +Wj""W1

o LN

Equation of Closure

LN

Loop Dizp!acememt Equation
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A loop displacement equation can be written for each displaced po-
sition. JJ Note: JJ It describes the unknown vectors in terms of their
reference configuration!

| realize that those of you who plan to go \

(tmor;med may find all of this a biW

"".-:;;*:,"\ /

For three given design positions you can write two loop closure equa-
tions as shown below:

(ei2—1) (ei2—1)||Z4 | _ |05
st

Given prescribed } 00D > ( Known from
input data Real v's Two complex input data
unknowns
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This 1s a system of two complex non-homogeneous equations in Z,
and W . You can arbitrarily pick values for v, and v, to meet your
little heart’s desires for the rotation of W and then solve to find the
corresponding values for Z and W .

Once you have solved for Z, and W, you can then solve for the
circlepoints and centerpoints as

K1 =r1 ""21
and
M= K1 —W1

Varying the freely chosen values for y, and vy, yields a double infin-
ity of three position solution possibilities. This confirms what we

already know, thatis, @ 1 Y point is a circlepoint for three positions!

But take another gander at what is happening.

Assuming we are planning to use these
circlepoints and centerpoints to design linkages
like four-bars or slider-crank mechanisms, then
Y, is the amount that the crank of the linkage
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will swing by as the body moves from position one to two, and v, is
the amount it rotates as the body moves from position one to three.

Since we can freely pick the gammas, we can actually specify the
rotations of both cranks of our four-bar, for example, at the same
time we are controlling the corresponding motion of the coupler body!
In other words, we can specify the timing with which the body mo-
tion will occur, and we can simultaneously generate almost any de-
sired functional relationship between the input and output shaft rota-
tions with three accuracy point approximation! So we can synthe-
size a four-bar to correlate the motion of the coupler link (x and y
displacement of the point A along with the rotations ¢, of the cou-
pler) and at the same time specify the angular displacements of the
input crank and the angular displacements of the output link!!!!
Amazing. All this for three positions. Truly amazing.

[]

If graphic work
gets on voyr herves...
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“1

Given four prescribed design positions, one can write three loop dis-
placement equations:

2

(e’:@-—l) (e’:Vz-—l) 7 O
(e 1) (ein—1) [w‘]= 5,
(e —1) (em:—1)JL1] |3,
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Since there are three complex equations and only fwo complex un-
knowns (Z, and W) the equations will only have a solution (or solu-
tions) if the equations are linearly dependent, that is, if the coeffi-
cients satisfy certain “‘compatibility conditions.”

,,,,,, = ~
CTme for a Brief Digression on Compatibility...>
- — =

Suppose we have the equations

The
l “Augmented Matrix”

are keeping you from
blissful slumbers...
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_ The
M= [-—%0 12 l “Coefficient Matrix”

Look at the left side of these equations:

1 _5(2X-3Y)

The left side of the second 1s -5 times the left side of the first, so the
left sides are linearly dependent.

Suppose we multiply the first equation through by -5. We get

-10X +15Y =-25

[ ]

You should try SOme
complex humbers, .
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but the second equation says

—10X+15Y =28

so the equations are inconsistent!

Now look at the matrix M:

Mz[—%o Tgl
IM|=0
[

Burma-
Theory
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Since the rows of M are proportional,|M|= 0. The rank of M is the
order of the largest nonzero determinant contained in M. Thus, in

this case, the rank of M 1s 1.

(This is getting to be a longer digression
than | planned. Take Alka Seltzer for your
indigression.)

Now consider the rank of the augmented matrix A. To find this, look
at the values of the three two by two subdeterminants contained in A:

2 -3 |_
10 15 |=°
2 5|_
-0 8|7 |,
2 2]=-99
15 8

Since at least one two by two determinant is nonzero, the rank of the
augmented matrix A is two.

Rank A > Rank M
(and the equations are inconsistent!)
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Suppose the equations had been

ik {—255"]\

L =5X5

Now the right hand sides have the same ratio as the left hand sides.
The equations are consistent and the

Rank A=RankM =1

Since the equations are proportional, we (the cognoscente) call them
dependent and we might just as well have a single equation. For
example, we could assign any value to X and solve either one of the
equations for a corresponding Y.

For instance, the first equation gives

We could just as well solve for X as Y.
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The fact that we had rwo equations but
Rank M =1

meant that only one of the two equations was linearly independent.

T o
K | assume there is a point to all this...

x\/

Thus, in order o bPe able o
solve the equations,
they must be consistent

Rank A = Rank M

(Since M is a submdrix of A, Rank A
can never Pe less than Rank M)

If Rank A = Rank M = n, the number of unknowns, then the equa-
tions are consistent and linearly independent. In that case, they can
be solved for one solution for the n unknowns. If there are more
equations than unknowns, however, you must be careful to choose n
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equations which are linearly independent or you could get blown
away'!

If you have n linearly independent equations you can solve them by
any of the usual methods for the the n unknowns. A simple method
that works well for two or three unknowns is using Cramer’s Rule.

A zzaforinstan c e ,ifyouhadtheequations

1 1 5
1-3 N: 1
2 2|LYl |10

you could solve the first and second for X and Y or you could solve
the second and third for X and Y but you couldn’t solve using the
first and third.

And why couldn’t |, might | ask?

You couldn’t because the first and third equations are linearly re-
lated. If you insist on trying despite that fact, then I would need to
revise this to read that you couldn’t solve them for the more funda-
mental reason that you appear to be dumber than a brick.
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Finally, if Rank A = Rank M =r, but r < n (the number of unknowns)
then there are an infinite number of solutions. (Maybe even more,
but we want to keep this from becoming too esoteric a discussion.)

One can select r independent equations in r unknowns and solve these
for the r unknowns in terms of the remaining n - r unknowns. You
must solve for unknowns corresponding to one of the non-zero de-
terminants of rank r. For instance, if you had the equations

1 1-1(|X]| |2
11 1}|Y|=|3
2 2 0]|Z] |5

then Rank M = Rank A = 2, since
1 -1
‘ 1 1 l:& 0)

but you can’t just set Z = 0 and try to solve for X and Y since the
resulting equations are

1 1 2
11m=3
o 2|lYl |5

97



which are inconsistent. You need to solve for unknowns correspond-
ing to one of the non-zero 2 x 2 determinants, such as

‘1-—-—1
1 1

Thus, you can solve for Y and Z in terms of X but not X and Y in
terms of Z.

o w’”\\
W this is the end of the digression!
\~\«7 \‘//———/

—
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- back at four-position Bu Theory,
(ft our horoine with the following evilsye.

tem of equations:

(e’¢2~1) (ei72-1) 7 9,
(e'?-1) (ei-1) Wl 9,
(e"“—l) (e'7+-1) o,
m‘\.‘) «r‘x‘t> \\:\\) ()) L < ¢
: . v 20 ol “ = Known from
GI\/'SH prescribed & ¢ —a Two complex Ut data
input data Real ng unknowns P

These can only have a solution if the Rank A = Rank M = 2. That is,

(e?2-1) (e'2=1) 8,
(ef?s- )(eiy3—1)53 , Rank 2
(ei®=1)(e'7-1) =

Compatibilitv Condition

This condition can be expressed in the following compatibility equa-
tion:

(e"2-1) (e'2-1) ,
(e'93-1) (e -1) 8, |=0
(ei¢4_1) (eiy4_1) 84
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This 1s a complex determinant, so it can be solved for two real quan-
tities or one complex number. Since the ¢.’s and the SJ.’S are speci-
fied, we must solve it for two of the Y,’s. We can arbitrarily pick v,
for instance, and then solve for y, and vy,.

Expanding the compatibility equation in terms of cofactors of the
second column, we get

. ¢3_ ) . ( i¢2_1)8
_(ei72_1 (e. 1) 3 iv3_1 e‘ )
< ) (e’d’4—1) 9, +le ) (e”“—l)ﬁ
k‘\/’”“"/ T~
—A A,
_(eiy4_1) (6 ¢2—1)82 -0
(€l¢3‘1)53
~—
_A4

or

e' Ay +e' A+ e TN = A,
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where

A=A+ A+ A,

and where all of the Aj’s are 2X2 complex determinants, readily cal-
culated from the given input data. Thus, the Aj’s are known complex
numbers.

As an alternate notation, let us write

_ [H,
Ay =R ,e

—_ ps
A;=R e

— Ty
Ay=R e

and




Suppose we choose to solve fory, and v, in terms of y,. Then let

Without further embelishment, we get the following elegantly con-
cise equation:

Each choice of a y, results in a known A and a corresponding equa-
tion of this form which can be solved for corresponding compatible
values for y,and vy,.

This modest equation can be given the following graphical interpre-
tation:
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The complex numbers A, A, and A, are known complex numbers at
this point and can be visualized as vectors as shown above.

How can we visualize e'"3A;? e'"3A;simply differs from A, in
that the vector has been rotated through some unknown angle y.. The
modest little equation on the preceeding page is a loop closure equa-
tion for a vector triangle. It says (if it could speak):

N

“Uector A, rotated through an unknown
angle vy, plus vector A, rotated through a
different unknown angle y, add up to equal
the known vector A.”
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Compeatibility Triangle”

I
e B
f We can call tm
\
S

As can be seen from this figure, the compatible solutions for v, and
Y, are given by the two possible ways in which the vector triangle
can be assembled. Clearly (or if you prefer, “It is intuitively obvi-
ous”) (something that people say when they know damn well it is as
obscure as mud) there are two possible ways to form a triangle given
the fixed vector A and given the known lengths of the vectors

e'B3A, and e'rsA, .
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You could rotate the original known vector A, by the angle y, as shown
to get the vector eA; . Similarly, you could rotate the known vec-
tor A, by the angle v, to get the vector eisA, . Vectors e'"A; plus

¢i”sA, add up to equal the known vector A.

Alternatively, you could rotate the original vector A, by the a differ-

ent angle v, — an angle we’ll call }73—-——- to get the vector e'PA; .
Similarly, you could rotate the known vector A, by an alternate value

of angle y, — we’ll call this /}74——- to get the vector e'f+A, . Vectors

ei3A, plus e'+A, also add up to equal the known vector A.

Rotations y, and Y, allow one assembly of the triangle and rotations

Y 3 and % 4 give a second way in which you can assemble the vector
triangle.
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Algebraically, you can determine the magnitudes of the internal angles
of the triangle by using the Law of Cosines. (Come on, now. Don’t
pretend you don’t remember the Law of Cosines. That’s the one you
learned back in high school that says “If you have a triangle with
sides of lengths a, b, and ¢ opposite the angles o, B3, and y then
c2=a*+b?-2abcosy) Let’suse it to determine the interior angles
0, and 0, of this vector triangle:

From the figure above we can see that

0 =cos—l(iA2l+lA23l—|Afll)
3 2A A3

orm e LA 83
4 2A A

A few pages back (when this discussion was literally on track ,=%) I
introduced the shorthand notation of using u, W, and u, to stand for
the known slopes of the vectors A, A, and A,.
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With that notation, the solution for the unknown angles v, v,, 73 :

and ¥4 becomes:

Y3 = U~ U3 — 63 } Both of these angles are compat-
V4= U— us+ 64 ible with the chosen Y,

V3=u—u3+ 63 } These angles are also compatible
Vo= U — 14— 04 with the chosen Y,

(At this point you should stop and check to see if vectors e’"3A; plus

e¢i”sA, add up to equal the known vector A. If they don’t, the darned
arrow head was on the other end of either the A, or the A, vector. To

fix this minor snafu you just need to add pi to the value of 0, in the

equations above and recalculate y, and ¥4 .)

Now that we have found compatible sets of values for v, v,, and y,,
we can go back and solve any two of our original equations for Z,
and W just the way we did for three positions. Just as a reminder,

(ei2— 1) (e2—1)|| Z4 | _ |8
(el — 1) (e'?s — 1) W, - [53} 5, (em-1)
y 83 (eM-1)
You can use any of the standard meth- I e -1)(er-1)
i : (e’ —1) (e~ 1)
ods to solve these equations. For in- |
stance, using Cramer’s Rule (as op- (‘322“ 1) 2
posed to the Peter Principle or W, - t“f*: B(w 3 ;
Murphy’s Law):
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Once you have solved for Z and W, you can then solve for the
circlepoints and centerpoints as

K1=r1“‘21

and

M= K1—'W1

Remember, point K| is a point on the moving body as seen in it’s
reference (#1) position. Point M is a corresponding point on the
fixed body. Point K circles around point M as the body moves
through the four positions. Since points K, and M correspond to one
another they are sometimes called a “Circlepoint-Centerpoint Pair”.

M Using the alternate compatible set of
values for y,, ¥3, and ¥, in these

Generating same equations gives an alternate
centerpoints... solution for vectors Z and W (we

can call these Z, and W,). Using
them in the above equations we can
get another circlepoint-centerpoint
pair that is also compatible with the
\ same crank rotation angle y,. We can

call these points K, and M.
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Thus, for each arbitrary choice we make for the angle y, we obtain
two circlepoints and two centerpoints. Wiggling the angley, slightly

yields a slight change in the locations of these circlepoints and
centerpoints.

Sweeping the angle v, around in a complete circle from 0 <y, <27
causes points K, and K | to each sweep out a branch of the “Circlepoint

Curve” or locus. At the same time, points M and M will generate
branches of the “Centerpoint Locus.”

There is a one-to-one mapping or correspondence between the points
on the Circlepoint Locus and the points on the Centerpoint Locus.
There are an infinite number of points on these two curves, with two
pairs of points corresponding to each value of v, . Thus the possible
choices for four-bar mechanism links is infinite for four positions.

Pick off of the loci any two

circlepoint-centerpoint pairs that [ ]
strike your fancy and you have your- on i

self a potential four-bar. (Just be SZJ!“‘“’_’-’?S with
careful you don’t get your fancy I0g Joints...
caught in the four-bar. Pick one pair

for the driver link and another pair

for the follower. You can pick e1-
ther of these links off of either branch
of the locus you like. The two /
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branches are functionally identical. They just happened to pop out
that way because of the way in which we derived the equations.)

[

Graehically just
doesn’t PaY...

I

-
—
—_/

Since you have an infinite number
of potential input links for your de-
vice and also an infinite number of
possible output links, you have a
double infinity of four-bars you can
synthesize for four given design po-
sitions! Four-bars are swarming all
over these loci like locusts! Go
get’em!

[]

S0 get your cyryes
the easy way, .

R
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otice that varying the angle vy, varies the side A of the “com
patibility triangle.” For certain magnitudes of A, the tri

angle will flatten out, either with
[A]=]Az]+]A4]
or with A]=] |Ag] -] Aqll

When this happens, the loci K, and I~(1 join together as do the curves
M and M.

For certain values of y, it may not be possible to assemble the “com-
patibility triangle” at all. In this case, a mathematician would say the

points K, K,, M and M still had solutions but that the solutions
were all imaginary. The rest of us would probably say that the math-
ematician was seeing things and should be locked up someplace where
he won’t hurt himself or us real-world engineers.

111



Algorithm for Burmester Curve Determination

a la Sandor, Freudenstein, & Their Progeny
T

Read rj,j =1,2,3,4
| (pjaj:2,3,4

Calculate §,,j =2,3,4
and Ai,j=1,2,3,4

|

Initialize vy, =0

Toddle off for a glass of
Geritol (or other liquid
refresher)

Y, =Y, +1°

A =A1 —e" A2

Solve by Law of Cosines for
Ys»Yas Y30 Vs

Then solve for
z,Ww,Z, W, K MK, M

/ —
:"‘\\‘
/
/
H ~ o~
of “K.M.K,M
Do W s 3
N T
~ ~.o
~ ~.
~ .
~ \\~
~ ~ -
\\

-
—~
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